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Abstract. The present work is an effort to support the typographical errors of keywords that are not supported by existing
compilers and integrated development environment(IDE) in ’C’ language. The fuzzy automata modelling approximate string
matching is proposed for error handling during lexical analysis. By introducing fuzziness to lexemes the typographical errors
can be rectified at the time of compilation and flexibility of lexical analyser can be greatly improved. The recognition of fuzzy
tokens during lexical analysis is described in order to correct errors caused by sticking key, deletion, typing and swapping key
in keywords during C programming. Algorithms and pseudo code are being developed to measure the degree of membership
of crisp and fuzzy lexemes. Accuracy is tested and examined once the fuzzy lexemes are trained using a neural network. The
proposed method is an add on feature that can be incorporated in existing compilers and IDEs to increase their flexibility.
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1. Introduction

Approximate string matching (ASM) is used in
many applications such as information retrieval, text
searching, text summarization, pattern recognition,
spell checking, recognition of lexemes in lexical
analyser etc. [7, 11–14, 18, 19, 21, 30]. ASM is
a technique to compute similarity between a pair
of strings. In literature ASM is broadly classi-
fied into string based similarity measures and term
based similarity measures [11, 30]. There exists
many approaches to compute similarity in ASM
such as distance metrics [11, 22], n-gram methods
[2], automata based methods [9, 23] and filter-
ing algorithms [6]. The distance measure based on
Damerau-Levenshtein edit distance [15, 22] counts
minimum number of operations required to trans-
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form one string into another, including operations
such as insertion, deletion, substitution, swapping of
symbols having time complexity O(mn). Extensions
of distance method proposed in [31] with k differ-
ence allowed has time complexity O(kn) and when
alphabet size b is taken into consideration complex-
ity is O(kn/

√
b − 1). Mendivil et al. [17] applied

fuzzy automata to compute similarity between two
strings by considering the membership value of fuzzy
language assigning cost to different edit operations.
Garitagoitia et al. [18] introduced fuzzy automata
to compute similarity between strings by consider-
ing fuzzy transitions based on assigning predefined
cost to each edit operation. Astrain et al. [13] cre-
ated a dictionary of all the possible errors and then
computed similarity of input string by comparing it
with every word of dictionary. They proposed fuzzy
automaton for classification of strings and attained
improved recognition rates using generic algorithm
with time complexity O(m × n × t), where t is size
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of alphabet and m, n are lengths of target and input
strings, respectively.

Astrain et al. [14] proposed fuzzy automata with ε

moves that allows fuzzy edit operations modelled by
binary fuzzy relations. They suggested fuzzy mea-
sure to compute similarity using string alignment
and edit operations to overcome limited number of
errors. Authors [28] suggested a technique to search
or match strings in special cases when some pairs of
symbols are more similar to each other and discussed
its applications in DNA computing and spellchecker.

Ravi et al. [21] introduced intuitionistic fuzzy
automata for ASM to compute similarity as well as
dissimilarity of all possible edit operations. Ko et al.
[25] computed similarity using context free gram-
mar and fuzzy automata considering linear, affin and
concave gap costs using dynamic programming algo-
rithms. Shaprio et al. [7] initiated deep learning model
in combination with memoization for text classifi-
cation to detect and correct spelling errors in OCR
output. Boinski et al. [26] suggested n-grams methods
for spelling errors and correction.

Essex [1] came up with secure approximate string
matching for record linkage against errors using
bigram decomposition and extended dice coefficient
to threshold dice coefficient for string similar-
ity. Recently, Faro et al. [24] introduced Range
automaton by proposing Backward Range Automata
Matcher algorithm and added features of swap match-
ing and multiple string matching for text searching
algorithms with quadratic run time complexity.

1.1. Research gap

In literature, there are edit distance, hamming
distance, Levenshetein, Damerau-Levenshetein, n-
grams, q-grams methods and algorithms developed
so far for approximate string matching [11, 30]. The
application of ASM in lexical analysis is not explored
much. Crisp compilers use a bi-valued approach. In
compilers, a string is either recognised or not recog-
nised as a token. There is no technique for compilers
in the ‘C’ language to accommodate typographical
errors in existence. Mateescu et al. [3] discussed the
applications of ASM and fuzzy automata in lexical
analysis and proposed an extension of LEX compiler
for UNIX with added features to deal with typograph-
ical errors. Bhosle et al. [27] has suggested a fuzzy
lexical analyser for tiny language and proposed algo-
rithm to consider typographical error during token
recognition process. Their method is based on thresh-
old value for acceptance of error keywords but it is

limited to only eight keywords and ignores swapping
key errors.

1.2. Basis of Study

The primary goal of our research is to use fuzzy
automata in lexical analysis phase of compiler con-
struction to allow lexical errors in keywords which
may exist due to typographical errors taking edit oper-
ations of ASM into consideration. The typographical
error or typo error refers to the unintentional typing
error that occurs due to accidental hitting a wrong key.
There are four kinds of typographical errors: dele-
tion of key, swapping key, sticking key and typing
key error. The motive of the research is to handle
typographical errors in keywords by compiler itself
instead of user intervention.

Existing IDEs deal with this issue in two ways:
Case1: It recommends the feasible keywords while
typing.
Case 2: After compiling, they display a message i.e.
not defined or implicit declaration of function.
In the first case, programmer must opt correct sug-
gestion and in case 2, one has to rectify these errors
at the place manually. Whereas by proposed method,
these errors can be handled at the time of compilation.
Thus, it will save energy and time of the programmer.
The proposed idea is an add on feature that can be
incorporated in the existing compilers, where instead
of showing errors it will accept keywords, on the basis
of their membership values.

1.3. Contribution

String matching is used to implement lexical anal-
yser which requires regular expressions and finite
automata. Fuzziness in lexemes for token keyword
is introduced to boost the flexibility of crisp com-
pilers and to make them more user friendly. In
proposed work, the keywords are categorised into
crisp keywords and error keywords. Both are fuzzy
in nature. Crisp keywords are correctly spelled key-
words directly accepted by compilers and probable
typing errors that result from sticking key (deletion),
missing letter (insertion), sequencing (swapping), or
mistyping of keys (substitution) are termed as error
keywords or fuzzy keywords. Fuzzy regular expres-
sions of keywords are generated in fuzzy lexical
analysis. Fuzzy regular expressions are first con-
verted into Non-deterministic Finite Automata with
Fuzzy (final) States (FS-NFA) and then Deterministic
Finite Automata with Fuzzy (final) States(FS-
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DFA) are constructed because FS-DFA are easy to
simulate.

Algorithms along with pseudo code for calculat-
ing the membership value of crisp keywords and
error keywords are proposed. At various levels of
membership, the error keywords are accepted. These
membership values are trained using a neural net-
work, which enables lexical analyser to consider
keywords with different membership value.

The present work is an effort to discuss ASM for
handling typographical errors in tokens generated at
the time of lexical analysis phase of C compiler. In the
proposed approach, all the possible error keywords
are generated corresponding to crisp keyword, along
with edit operation we have added method to calcu-
late the similarity between crisp and error keyword
by considering membership value of generated error
keywords.

The paper is laid out in following manner: The
first section is an introduction. In section 2, some
important concepts are recalled. Section 3, describes
proposed method and procedure. The results are
covered in Section 4, and the study concludes in
Section 5.

2. Preliminaries

This section goes over some basic definitions of
fuzzy languages and fuzzy automata. For more infor-
mation, readers can refer [3, 8] and [29]. Throughout
this paper � denotes any set of finite alphabets and �∗
be the set of finite strings constructed from elements
of �.

Definition 2.1. [8] A fuzzy language is collection of
all strings having membership values in the interval
[0, 1].

Definition 2.2. [3, 8] Let fL̃1
an fL̃2

be two fuzzy
languages over �, Then the operations on fL̃1

and
fL̃2

are defined as:

1. fL̃ = fL̃1
∪ fL̃2

is union of fuzzy languages
fL̃1

and fL̃2
and its membership function is

μfL̃(x) = max{μfL̃1
(x), μfL̃2

(x)}, x ∈ �∗.
2. fL̃ = fL̃1

∩ fL̃2
is intersection of fuzzy lan-

guages fL̃1
and fL̃2

and its membership func-
tion is μfL̃(x) = min{μfL̃1

(x), μfL̃2
(x)}, x ∈

�∗.
3. fL̃ = fL̃1

c is complement of fuzzy language
fL̃1

and its membership function is μfL̃(x) =
1 − μfL̃1

(x), x ∈ �∗.

4. fL̃ = fL̃1
.fL̃2

is concatenation of fuzzy lan-
guages fL̃1

and fL̃2
and its membership func-

tion is μfL̃(x) = max{min(μfL̃1
(a), μfL̃2

(b)) |
x = ab, a, b ∈ �∗}, x ∈ �∗.

5. fL̃ = fL̃1
∗ is Kleene closure or star opera-

tion of fL̃1
and its membership function is

μfL̃(x) = max{min(μfL̃1
(x1), ..., μfL̃1

(xn)) |
x = x1, x2...xn, x1, x2, ..., xn ∈ �∗, n ≥ 0},
x ∈ �∗, assuming that min φ = 1.

6. fL̃ = fL̃1
+ is Kleene plus operation of fL̃1

and
its membership function is μfL̃(x) = max{min

(μfL̃1
(x1), ..., μfL̃1

(xn)) | x = x1x2...xn, x1,

x2, ..., xn ∈ �∗, n ≥ 1}, x ∈ �∗.

Remark 1. The equivalence and inclusion relations
are true in fuzzy languages.

Definition 2.3. [3] Let fL̃ be a fuzzy language over
� and μfL̃ : �∗ → [0, 1] be the membership func-
tion of fL̃, then for each t ∈ [0, 1], the set SfL̃(t)
is defined as SfL̃(t) = {x ∈ � | μfL̃(x) = t}. fL̃ is
called regular fuzzy language if

1. the set {t ∈ [0, 1] | SfL̃(t) /= φ} is finite.
2. for each t ∈ [0, 1], SfL̃(t) is regular.

Example 2.1. Let fL̃ be a language over � = {0, 1}
where μfL̃ is defined as

μfL̃(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x ∈ 01∗

0.76, if x ∈ 011∗0

0.59, if x ∈ 1011∗

0, otherwise.

Then fL̃ is a regular fuzzy language , since t =
{0, 0.59, 0.76, 1} is finite and for each t ∈ [0, 1],
SfL̃

(t) is a regular language.
Regular expressions are used to represent strings in

more declarative way in the form of algebraic expres-
sions [4].

Definition 2.4. [3] A modified regular expression is
termed as Fuzzy Regular Expression(FRE).

1. (∇)/t is a FRE where ∇ is regular expression
over � and t ∈ [0, 1].

2. The union ∇1 + ∇2, concatenation (∇1).(∇2)
and Kleene closure (∇1)∗ of fuzzy regular
expressions are all fuzzy regular expressions.
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3. FRE is obtained by repeated applications of (i)
and (ii) finite times.

Definition 2.5. FS-NFA [3] FS-NFA is a 5-tuple M =
{S, �, δ, s0, FM} where:

1. S is a finite non-empty set of states.
2. � is a finite non-empty set of input symbols.
3. δ : S × � × S → [0, 1], is the transition func-

tion.
4. s0 ∈ S is called initial state.
5. FM : S → [0, 1] is the degree function for

fuzzy final-state set.

For x ∈ �∗ and s1, s2 ∈ S, define δ∗ : S × �∗ ×
S → [0, 1]

δ∗(s1, λ, s2) =
{

0, if s1 /= s2

1, if s1 = s2

and δ∗(s1, x, s2) = ∨{δ∗(s1, x
′, s) ∧ δ(s, a, s2)|s ∈

S} ∀ x = x′a, x′ ∈ �∗, a ∈ �.

A string x ∈ �∗ is accepted by FS-NFA with
degree or membership value dM(x), where
dM(x) = max{FM(s) | (s0, x, s) ∈ δ∗}.
The fuzzy language accepted by FS-NFA is denoted
as L(M) = {(x, dM(x))|x ∈ �∗}.
Remark 2. FS-DFA is an FS-NFA [3] with only dif-
ference in transition function i.e. δ : S × � → S.

A string x ∈ �∗ is accepted by FS-DFA with
degree dM(x), where dM(x) = FM(s)  s = δ∗(s0, x)
and dM(x) = 0 if δ∗(s0, x) is not defined.

3. Methodology

Compilers convert a source language to a target
language and report any errors back to the source
language. Analysis and synthesis are the two phases
of the compilation process. The first step in the analy-
sis phase is lexical analysis, which involves breaking
down the initial source language into parts and gener-
ating an intermediate representation. It is the interface
between source language and compilers. During lex-
ical analysis the source language is grouped into
lexemes, which are meaningful sequence of words.
For parsing, the lexemes are subsequently trans-
formed to tokens. Tokens can be treated as identifiers,
keywords, constants, operators and punctuation sym-
bols. Every lexeme that is to be identified as a token
follows a set of predefined grammar rules. Consider

Table 1
Tokens and Lexemes

Lexeme Token

float keyword
product identifier
( punctuation symbol
num1 identifier
, punctuation symbol
num2 identifier
) punctuation symbol
{ punctuation symbol
return keyword
* operator
; punctuation symbol
} punctuation symbol

program code in C language:

float product (float num1, float num2)

{
//This will multiply 2 numbers

return (num1 ∗ num2);

}
The tokens and lexemes for this program code is listed
in Table 1.

Compilers in ‘C’ language do not support typo-
graphical errors in keywords., therefore Fuzzy
Regular Expressions (FRE) for all 32 keywords
[5] are generated, taking into account all conceiv-
able errors. The algorithm 1 and algorithm 3 are
suggested to calculate the membership values of
crisp keywords and error keywords respectively.
For all keywords, FS-NFA is constructed and for
minimization FS-NFA is converted to FS-DFA.

Table 2 lists some possible typographical keyword
errors.

− Sticking key: particular character is typed twice
or thrice

− Deletion key: particular character is not typed
− Swapping key: sequence of character is

mistyped
− Typing key: typing of adjacent key in QWERTY

keyboard

Fuzzy Regular Expression: For each keyword,
fuzzy regular expressions are generated that allow
for sticking, deletion, swapping, and typing errors.

The FRE for reserved word "float" is as fol-
lows:
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Table 2
Possible typographical errors

Keyword Sticking Key Error Deletion Error Swapping Key Error Typing Error
float fffloaaat floa ftola dloat
while whiiileee hile wlihe wgile
switch switccchh swtch wsithc sqitch
printf prriiintt print prnift ptimtd
void voiiiid vid viod boif
struct ssttructt stuct srtcut ateuct

float/1 + (ff+ll∗oo∗aa∗tt∗ + ff ∗ll+oo∗aa∗tt∗ +
ff ∗ll∗oo+aa∗tt∗ + ff ∗ll∗oo∗aa+tt∗ + ff ∗ll∗oo∗
aa∗tt+)/m1 + (floa + flot + flat + loat + foat)/
m2 + (fotla + flaot + lfoat + lfaot + oflat +
olfta + afolt + aotfl + tfloa + tofla)/m3 + ((r +
d + g + c)loat + f (o + k + p + i)oat + fl(i + l +
p)at + flo(s + z + q)t + floa(r + y + g))/m4
Here, m1 denotes membership value due to sticking
key error, m2 denotes membership value due to
deletion key error, m3 denotes membership value due
to swapping key error and m4 denotes membership
value due to typing key error.

Algorithm 1 and its pseudo code are proposed
to calculate the membership values of crisp key-
words. The degree of letter specified in algorithm
represents the membership value of letters placed
at different position or index of crisp keyword
contributing to calculate the membership value
of crisp keyword. Each letter is contributing in
formation of crisp keyword therefore the value
of each letter is assumed to be same. Thus, the
membership value of crisp keyword is calculated by
determining the degree of each letter present in the
keyword.

Algorithm 1. Algorithm to find membership value
of 32 crisp keywords for ’C’ Language

Step-1: Create a dictionary for all 32 keywords

Step-2: Find length of each keyword,
length(crisp keyword).
Step-3: Initialise membership value of each keyword

as 0, membership value(crisp keyword) = 0.0.
Step-4: Find degree of each letter in crisp keyword,

degree(letter) = 1/length(crisp keyword).

Step-5: Calculate membership value of each

keyword using for loop
0 ≤ i < length(crisp keyword),

membership value(crisp keyword) =
membership value(crisp keyword) +
degree(letter).

Initially the algorithm 1 has time complexity as
O(m ∗ n), where m is the length of keyword and n is
the number of keywords i.e. 32. Since all keywords
are of small length, m can be assumed to be constant.
Hence, time complexity of algorithm 1is O(n).

Algorithm 1 is explained with the help of exam-
ple 3.1.

Example 3.1. To find membership value of keyword
"struct"
crisp keyword = "struct"
length(crisp keyword) = length(struct) = 6
Assume, membership value(struct) = 0.0
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Now calculate degree of each letter present in "struct"
using, degree(letter) = 1/length(crisp keyword)

degree(s) = 1
6 , degree(t) = 1

6 , degree(r) = 1
6

degree(u) = 1
6 , degree(c) = 1

6 , degree(t) = 1
6

membership value(crisp keyword)+ =
degree(letter)

membership value(struct) = 0.0 + 1
6

membership value(struct) = 1
6 + 1

6

membership value(struct) = 2
6 + 1

6

membership value(struct) = 3
6 + 1

6

membership value(struct) = 4
6 + 1

6

membership value(struct) = 5
6 + 1

6

membership value(struct) = 1.0

All the possible errors have been considered, i.e.
sticking key, deletion, swapping key and typing errors
to find error keywords corresponding to each crisp
keyword. Algorithm 3 is proposed for all these errors
to calculate membership value of error keywords. The
index of the letter plays an important role in pro-
posed algorithm to calculate membership values of
keywords. The membership value of error keywords
is calculated by considering four different possible
cases:

1. In deletion of key error the length of error
keyword is less than crisp keyword, hence the
degree(letter) = 0 for missing letter, rest all
degree(letter) will be same as in the crisp key-
word.

2. In QWERTY typing key error the degree of
letter which is not matched at index will
be considered as degree(letter) = 0, rest all
degree(letter) will be same as in the crisp key-
word.

3. In sticking key error the length of error keyword
will be greater than the crisp keyword, hence for
sticking letter occurrence of letter is taken into
account.

4. In swapping key error, the degree of let-
ter in error keyword is depending on the
degree(letter) of crisp keyword and count

of interchanges, i.e. how many positions are
required to shift the swapped letter.

Algorithm 3. Algorithm to find membership value
of error keyword.

Input: crisp keyword, error keyword

Output: membership value(error keyword)

Step-1 Initialise
membership value(error keyword) = 0.0

Step-2 Calculate length(error keyword) and
length(crisp keyword).

Step-3 Three cases may arise:

Step-3.1 Case-I
If lengths of both keywords are equal then it will be
considered as swapping key error or typographical
error.

Step-3.1.1 If sorting list of letters of error keyword

and crisp keyword is equal then it is considered as
swapping key error otherwise typographical error.

Step-3.1.1.1 Swapping key error: The index is
searched where mismatch occurs in crisp keyword

and error keyword. Count the number of inter-
changes [CI] required to shift the mismatched letter
to its original position.

Step-3.1.1.2 To restrict the membership value
of error keyword in interval [0,1], α/CI, where
α ∈ [0, 1] is considered whenever swapping key
error is observed. Calculate
degree(letter) = α/CI ∗ length(crisp keyword)
membership value(error keyword)+ =
degree(letter)

Step-3.1.2 Typographical error: Typing error in
QWERTY keyboard by possible adjacent keys. Both
keywords are compared at each index,
if error keyword[index] /= crisp keyword[index],
then degree(letter) = 0
else degree(letter) = 1/length(crisp keyword)
membership value(error keyword)+ =
degree(letter)
Step-3.2 Case-II

If length of error keyword is greater than length of
crisp keyword it will be considered as sticking key
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error. Count the number of times each letter appears
in error keyword. i,e. occ(letter)
degree(error keyword[index]) = 1/occ(letter) ∗
length(crisp keyword).
membership value(error keyword)+ =
degree(letter)
Step-3.3 Case-III

If length of error keyword is less than length of crisp
keyword it will be considered as deletion key error.
membership value(error keyword) =
length(error keyword)/length(crisp keyword).
Step-4 Write membership value of error keyword

calculated in Step 3.
Step-5 End.

The time complexity of algorithm 3 is O(mlogm),
where m is the length of error keyword.

Algorithm 3 is explained with the help of exam-
ple 3.3. Python code is created to generate these error
keywords and to compute membership value of error
keywords. The greater the membership value of error
keyword, the more it is considered similar to the crisp
keyword.

Example 3.2. Consider the crisp keyword "float"
and error keyword "ffloaat".

Step-1
crisp keyword ="float"
error keyword = "ffloaat"

Step-2 Initialise
membership value("ffloaat")= 0.0

Step-3
length(error keyword) = length("ffloaat")= 7
length(crisp keyword) = length("float")= 5

Step-4 Here,
length("ffloaat")> length("float"), therefore case II
sticking key error of algorithm 3 arises.

Step-4.2 Find occurrences of each letter in
"ffloaat",

occ(f ) = 2, occ(l) = 1, occ(o) = 1, occ(a) = 2,
occ(t) = 1
degree(error keyword[0]) = degree(f ) = 1

2∗5 =

1
10
degree(l) = 1

1∗5 = 1
5

degree(o) = 1
1∗5 = 1

5

degree(a) = 1
2∗5 = 1

10

degree(t) = 1
1∗5 = 1

5

membership value(error keyword)+ =
degree(letter)

Step-5 membership value("ffloaat")= 0.8

Table 3 represents summary of some possible
typographical error keywords corresponding to crisp
keyword "float" and their membership values are
computed using algorithm 3.

Every language that can be accepted by FS-NFA
can also be accepted by FS-DFA [16]. FS-NFA for
keyword "float" is given in Fig. 1 containing 52 states.
Corresponding to FS-NFA using subset construction,
method FS-DFA is constructed. FS-DFA for keyword
"float" is given in Fig. 2 which has less number of
states as compared to FS-NFA.

3.1. Implementation

This section discusses the suggested method’s
general implementation.

Step-I First all the keywords of ‘C’ language are
defined.

Step-II All the possible errors of each key-
word are generated using fuzzy regular expressions
and dictionary is created which consists of crisp
keywords and error keywords.

Step-III Membership value of each error key-
word is calculated using proposed algorithm 1 and
algorithm 3 considering all errors.

Step-IV Each keyword is assigned a label.

Step-V A neural network is constructed to train error
keywords corresponding to these labels.

Step-VI Accuracy is measured on testing data.
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Table 3
Membership Values of error keywords generated from crisp keyword "float"

error keyword deg(f) deg(l) deg(o) deg(a) deg(t) member-ship value
ffllooat 0.1 0.1 0.1 0.2 0.2 0.7
floatt 0.2 0.2 0.2 0.2 0.1 0.9
floa 0.2 0.2 0.2 0.2 0 0.8
dloat 0 0.2 0.2 0.2 0.2 0.8
ftola 0.2 0.04 0.2 0.04 0.03 0.51
folat 0.2 0.12 0.03 0.2 0.2 0.75

Fig. 1. FS-NFA for keyword "float".

4. Results

For experimentation, a dictionary is created for
all the 32 crisp keywords for ’C’ programming lan-
guage using python. Corresponding to each crisp
keyword, 40 keywords are generated by considering
all the possible typographical errors. The dictio-
nary contains 1280 keywords after appending all
the errors considering deletion, sequencing, sticking
key and typing errors. Each keyword is assigned a
label and added with crisp keyword corresponding to
that label. By reducing redundant comparison, accu-

Fig. 2. FS-DFA for keyword "float".

racy is increased, and time complexity is decreased.
The membership value of each keyword is calculated
using the algorithm 1 and algorithm 3. The efficiency
of method is further enhanced by using neural net-
work to validate it for unseen data.

The data is split for training and testing using Keras
framework. For training set 80 percent i.e. 1024 key-
words are taken in to consideration. A neural network
is trained for these membership values. The network
is run with learning rate 0.7 and 90 epochs. The aver-
age accuracy measured is 82.81%. The loss graph in
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Table 4
Comparative Analysis of membership values of error keywords

Ravi et al.[21] Vaishali et al.[27] Kondark [10] Proposed Algorithm
ffloaat 0.6 0.8 0.8 0.8
ftola 0.6 1 0 0.51
folat 0.6 1 0.25 0.75
floa 0.6 08 0.86 0.8
dloat 0.6 0.8 0.75 0.8

Fig. 3. Training and Validation Loss.

Fig. 3 depicts that, for the first 12 epochs, the loss in
the training set falls off quickly. The loss for the test
set does not decline as quickly as it does for the train-
ing set, but rather, after 40 epochs, it nearly remains
constant. This shows that the model generalizes well
to new data. Similarly, Figure 4 demonstrates how
quickly accuracy rises in the first 10 epochs for both
training and testing sets, hence the network is learning
fast. Afterwards, the curve flattens indicating that the
fewer training epochs are needed to train the model
further.

4.1. Comparative Analysis

The comparative analysis of calculating the
membership values of keywords using suggested
algorithms from the literature is presented in Table 4.
In Ravi et al. [21], as the cost of all possible edit opera-
tions are predefined, therefore the membership values
of error keywords are constant. In [27], the swapping
of keys is not considered. In [10], while switching
adjacent keys yields accurate results, switching all
the letters in a word is not taken into considera-
tion. The results demonstrate that the membership
values obtained by our proposed algorithm are near
to expected membership value as compared to other
three methods in terms of recognition, encompassing
all feasible scenarios.

Fig. 4. Model Accuracy.

4.2. Recommendations

In the proposed work, application of ASM using
fuzzy automata is discussed in lexical analysis phase
of C- compiler. The proposed idea is an add on fea-
ture which can be incorporated in existing compilers
not only in ’C’ language but also in other compilers
and IDEs. The authors team is not boasting to develop
a new compiler, but different OS companies or pro-
grammers can take this approach as a new bench mark
for future development of an efficient and flexible
product.

5. Conclusion

The proposed method is a feature that can enhance
the efficiency of existing compilers and make com-
pilers more user friendly. The errors are rectified at
the time of lexical analysis phase. This saves time for
parsing and further analysis of source program. Tra-
ditional compiler of ‘C’ language does not support
error handling in keywords, hence to improve the effi-
ciency of existing compilers fuzziness in the token is
introduced. Considering operations of ASM possible
error keywords are compared with crisp keywords.
Algorithms are proposed so that error keywords may
be accepted at varying degrees of their membership
values.
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The keywords are further trained using neural net-
work and an average classification accuracy of 83%
is achieved.

In future, the method can be extended for opera-
tors and other tokens and full implementation of a
fuzzy lexical analyser can be done. The proposed
approach can be further tested and implemented in
other compilers, IDEs to increase their flexibility and
user friendliness.
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